Triangular Bézier sub-surfaces on a triangular Bézier surface
نویسندگان
چکیده
This paper considers the problem of computing the Bézier representation for a triangular sub-patch on a triangular Bézier surface. The triangular sub-patch is defined as a composition of the triangular surface and a domain surface that is also a triangular Bézier patch. Based on de Casteljau recursions and shifting operators, previous methods express the control points of the triangular sub-patch as linear combinations of the construction points that are constructed from the control points of the triangular Bézier surface. The construction points contain too many redundancies. This paper derives a simple explicit formula that computes the composite triangular sub-patch in terms of the blossoming points that correspond to distinct construction points and then an efficient algorithm is presented to calculate the control points of the sub-patch.
منابع مشابه
Approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces
An attractive method for approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces is introduced. The main result is that the arbitrary given order derived vectors of a polynomial triangular surface converge uniformly to those of the approximated rational triangular Bézier surface as the elevated degree tends to infinity. The polynomial triangular surface is con...
متن کاملSubdivision Algorithms and Convexity Analysis for Rational Bézier Triangular Patches
Triangular surfaces are important because in areas where the geometry is not similar to rectangular domain, the rectangular surface patch will collapse into a triangular patch. In such a case, one boundary edge may collapse into a boundary vertex of the patch, giving rise to geometric dissimilarities (e.g. shape parameters, Gaussian curvature distribution, cross boundary continuities etc.) and ...
متن کاملComputing exact rational offsets of quadratic triangular Bézier surface patches
The offset surfaces to non-developable quadratic triangular Bézier patches are rational surfaces. In this paper we give a direct proof of this result and formulate an algorithm for computing the parameterization of the offsets. Based on the observation that quadratic triangular patches are capable of producing C smooth surfaces, we use this algorithm to generate rational approximations to offse...
متن کاملMulti-degree reduction of triangular Bézier surfaces with boundary constraints
Given a triangular Bézier surface of degree n, the problem of multi-degree reduction by a triangular Bézier surface of degree m with boundary constraints is investigated. This paper considers the continuity of triangular Bézier surfaces at the three corners, so that the boundary curves preserve endpoints continuity of any order α. The l2and L2-norm combined with the constrained least-squares me...
متن کاملProgressive iterative approximation for triangular Bézier surfaces
Recently, for the sake of fitting scattered data points, an important method based on the PIA (progressive iterative approximation) property of the univariate NTP (normalized totally positive) bases has been effectively adopted. We extend this property to the bivariate Bernstein basis over a triangle domain for constructing triangular Bézier surfaces, and prove that this good property is satisf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 235 شماره
صفحات -
تاریخ انتشار 2011